P／N：110401109504X 修订日期：2020年7月30日

UT306H／UT308H
非接触式红外额温计使用说明书 （使用前请仔细阅读）

1．安全手则

2．主要结构


```
*)
*)
```


14．保管注意事项

 \qquad

15．废奔物处理声明

16．使用期限及配件清单

房号	酸生名称	数量	单位
1		1	支
2	${ }^{\text {AA电池 }}$	2	＋
3	产品使网说明书	1	本
4	保倞和和合倍证	1	${ }^{\text {弓 }}$

17．保修

3．医疗器械标签所用的图形，符号，缩写等内容的解释

M	生产日明	$\dot{\lambda}$	B型竝閧盆	［i］	
\triangle		［s］	产㫛系列号标记	8	使用則門标记

4．预期用途和适用范围

5．禁忌症

6．操作，存储和运输过程的环境要求

运输和储存过程的环境要求

接倠坷境要求			
渭度	$15^{\circ} \mathrm{C} \sim 35^{\circ} \mathrm{C}$	㴓度	$-20^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$
相对湿度	＜85\％R．H（无冷浣）	相对湿度	
大气压	$700 \mathrm{PPa}-1060 \mathrm{HPa}$	大气压	$700 \mathrm{HPa}-1060 \mathrm{hPa}$

7．产品技术说明

9．操作指引

10．使用

11．校准模式转换

－

：

13．产品维护和保养方法

	维㧧建议

18．电磁兼容

－潼：

\triangle 些示：

指南和制造商的声明一电矿发射		
（非接触式红外额温计，型号：UT306H／UT308H）预期使用在下列规定的电磁环境中，（非接触式红外额温计，型号：UT306H／UT308H）的购买者或使用者应该保证它在这种电磁环境下使用		
发身证䠯	答合珄	
	${ }^{1 \times 2}$	（非接触式红外额温计，型号：UT306H／UT308H）仅为其内部功能而使用射频能量。因此，它的射频发射很低，并且对附近电子设备产生干扰的可能性很小。
684824 RF 5 发的	㭺	（非接触式红外额温计，型号：UT306H／UT308H）适于使用在家用和直接连到供家用的住宅公共低压供电网的所有设施中。
	不适用	
GB17625． 2 电压波动／闪烁发射	不适用	

指南和制造商的声明一电磁持抗度			
（非接触式红外额温计，型号：UT306H／UT308H）预期使用在下列规定的电磁环境中，（非接触式红外额温计，型号：UT306H／UT308H）的购买者或使用者应该保证它在这种电磁环境下使用			
莸张法蕥		驸会电平	电矿和程
静电放电（ESD） GB／T 17626.2	$\pm 6 \mathrm{kV}$ 接触放电 $\pm 8 \mathrm{kV}$ 空气放电	$\pm 6 k \mathrm{~V}$ 接触放电 $\pm 8 k V$ 空气放电	地面应该是木质，混凝土或瓷砖，如果地面用湿度应该至少30\％．
电快速瞬变脉冲群 GB／T 17626.4		不通用	不通用

便淇式及移动式RF通信设备和 （非接触式红外㠙温计，型号：UT306H／UT308H）之间的准荐隔高距离			
 小距离来防此电磁于执			
	$150 \mathrm{kHz} \sim 80 \mathrm{MHz}$ $\mathrm{d}=1.2 \sqrt{\mathrm{P}}$	$\begin{aligned} & 80 \mathrm{MHz} \sim 800 \mathrm{MHz} \\ & \mathrm{~d}=1.2 \sqrt{\mathrm{P}} \end{aligned}$	$\begin{aligned} & \begin{array}{l} 800 \mathrm{HHz}-2.5 \mathrm{GHz} \\ \mathrm{~d}=2.3 \sqrt{\mathrm{p}} \end{array} \end{aligned}$
0.01	0.12	0.12	0.23
0.1	0.38	0.38	0.73
1	1.2	1.2	2.3
10	3.8	3.8	7.3
100	12	12	23
对于上表未列出的发射机额定最大输出功率，推荐隔离距离d，以米 (m) 为单位，能用相应发射机频率栏中的公式来确定，这里 P 是由发射机制造商提供的发射机最大输出额定功率，以瓦特（ W ）为单位． 注1：在 80 MHz 和 800 MHz 频率上，采用较高频范围的公式。 注2：这些指南可能不适合所有的情况，电磁传播受建筑物，物体和人体的吸收和反射的影响。			

优利德

优利德科技（中国）股份有限公司

